前段整流电路直流输出端并联了大容量储能电容,在上电前,电容器初始电压为零,上电瞬间整流输出端直流电压直接加在储能电容上,电容瞬间相当于短路,形成的瞬时冲击电流可能达到100A以上对电网带来冲击。为了限制上电瞬间大电流的冲击,在整流输出端放置一个固态开关。固态开关由晶闸管和限流电阻并联,其中晶闸管的通断受DSP的控制,在上电瞬间,晶闸管未被驱动导通,充电电流流过限流电阻,给予电容一定的充电时间,当电容两端电压上升后开通晶闸管,相当于将限流电阻短路,由整流电路直接对储能电容充电[29]。这样就限制了上电瞬间充电电流的大小,避免了大电流对电网的冲击。在这两个板之间保留着一个非导体。无锡粒子加速器电压传感器服务电话

在本设计中为防止单臂直通设置了两路保护:1)在超前桥臂和滞后桥臂上分别放置电流霍尔分辨监测两桥臂上的电流值,电流霍尔的输出端连接至保护电路。如果出现过电流则保护电路**终动作于PWM波输出模块,将4路输出PWM波的比较器锁死,使得输出为低电平,进而关断桥臂上4个开关管。2)驱动电路模块内部有过流监测。在所设计的驱动电路中,主驱动芯片M57962内部有保护电路监测IGBT的饱和压降从而判断是否过流。当出现过流时M57962将***驱动信号实现对IGBT的关断。上海霍尔电压传感器询问报价目前只有电压闭环反馈,接下来须引入电流闭环实现 对电路输出电流的控制。

图3-6和图3-7所示分别为输出端电压值和电压纹波(图中横纵坐标分别为时间和电压),经过PID闭环反馈后,输出电压值的纹波系数可达0.16%。因为本仿真实验中只加入了电压单闭环反馈,进一步提高精度需要再在外环加入电流反馈环。仿真电路很好的验证了试验参数计算的正确性和合理性,在本电路的初步设计中可以按照仿真电路中参数进行实验电路的搭建。传统的控制技术多是以模拟电路为基础的,其固有的缺陷是显而易见的, 比如 电路本身复杂、模拟器件本身存在差异性、温漂明显、不可编程性。基于这些固有 的缺点,数字化的控制技术优势便展现出来。
强磁场是指磁场强度高于商用超导磁体所能达到比较高的磁场,将磁场强度超过20T的磁场定义为强磁场。按照现阶段世界上强磁场系统的建设,强磁场系统一般由磁体、电源系统、低温冷却系统、测量测试系统和实验平台构成。其中磁体是直接产生强磁场的装置,电源为整个系统的工作提供相应的能量,低温冷却系统为磁体的工作创造必要的工作环境,测量测试系统是测量、监测和采集必要的实验参数和信息,实验平台即是为科学研究工作提供相关的接口和实验环境。目前的滤波装置级数低,滤波效果较差,输出端 可以采用LCCL三阶滤波器。

磁体的电源系统已有电容器电源和脉冲发电机电源组成,为了进一步减小脉冲平顶磁场的纹波,我们对磁体的电源系统加以改进,基于电容器电源和脉冲发电机电源,再辅助以基于移相全桥直流变换器的补偿电源,**终得到高精度高稳定度的可控脉冲电源。三组电源系统一起向磁体供电。相对于电容器电源和脉冲发电机电源,移相全桥补偿电源容量小、开关工作频率高,谐波频率高,系统反应快速。磁体的三个电源系统**工作,分别向磁体供电,所以本课题主要研究移相全桥补偿电源部分。电容器电源和脉冲发电机电源作为电源系统的主体部分,他们已为磁体提供了大电流。按测量原理来分可以分为电阻分压器、电容分压器、电磁式电压互感器、电容式电压互感器、霍尔电压传感器等。无锡粒子加速器电压传感器服务电话
电阻分压式由于没有谐振问题,性能优于电容式。无锡粒子加速器电压传感器服务电话
图3-3所示一次为开关管1(**超前桥臂)的驱动波形和电压波形,图中横纵坐标分别为时间和电压值。开通过程:由图可见当开关驱动波形由低电平变为高低前,开关管两端的电压已经为0,故而开关管的开通是零电压开通。关断过程:由于开关并联有谐振电容,在关断开关管时,开关管端电压不会突变,而是随着谐振电容缓慢上升,故而开关管的关断是软关断。图3-4所示为开关管4(**滞后桥臂)的驱动波形和电压波形,图中横纵坐标分别为时间和电压值。同超前桥臂上开关管一样,滞后桥臂上开关管实现了零开通和软关断。在参数调试过程中,滞后桥臂的软开关对参数更加敏感。谐振电容值过大或者谐振电感值过小可能就无法满足滞后桥臂上开关管的零开通。无锡粒子加速器电压传感器服务电话
文章来源地址: http://dzyqj.spyljgsb.chanpin818.com/chuanganqisr/hecgq/deta_27352470.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。